

Where Varieties Meet the Paddock

A Pilot Study on Spatial Variability in Wheat Performance

Sandra Tanz 25 November 2025

What are On-Farm Experiments?

GRDC GRAINS RESEARCH & DEVELOPMENT CORPORATION

- Research trials conducted directly on commercial farms, within real paddocks.
- Use farmers' own machinery, practices, and management zones.
- Typically involve large strip plots rather than small research plots.
- Designed to capture real-world performance under commercial conditions.

Why use OFEs?

- Complement small-plot trials with practical, paddock-scale insights.
- Reflect true farm environments → more relevant results.
- Allow large-scale comparisons (e.g., new vs commercial variety).
- Capture spatial variability (soil, moisture, topography).
- Support faster adoption by involving farmers directly.
- Provide high-resolution spatial data from modern machinery.

Where Varieties Meet the Paddock Tuesday, 25 November 2025

What is this project about?

- Collaboration between InterGrain and AAGI/CCDM.
- Pilot study using OFE strip trials comparing a near-release InterGrain wheat variety (Dale) with popular commercial wheat varieties (Scepter, Rockstar, Tomahawk).
- Conducted across multiple WA farms.
- Integrates harvest data, drone imagery, and spatial analytics.

Why are we doing this?

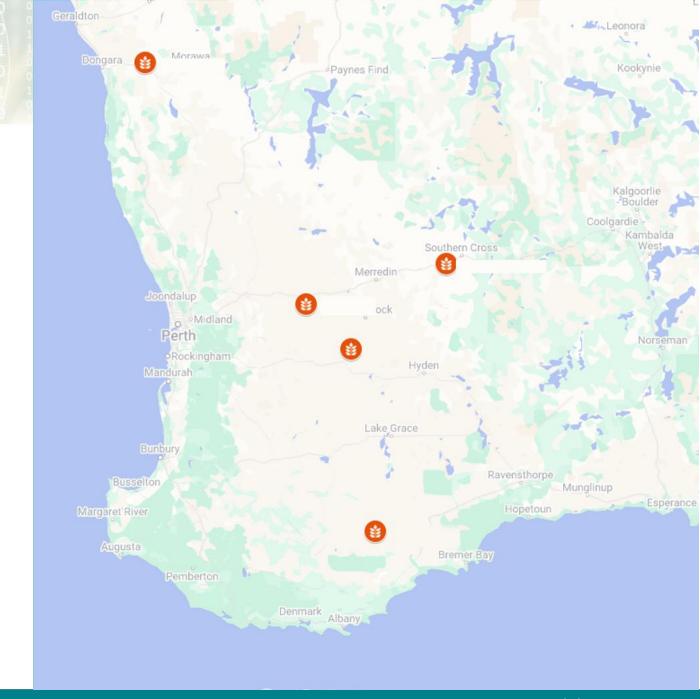
Centre for Crop and Disease Management

GRDC

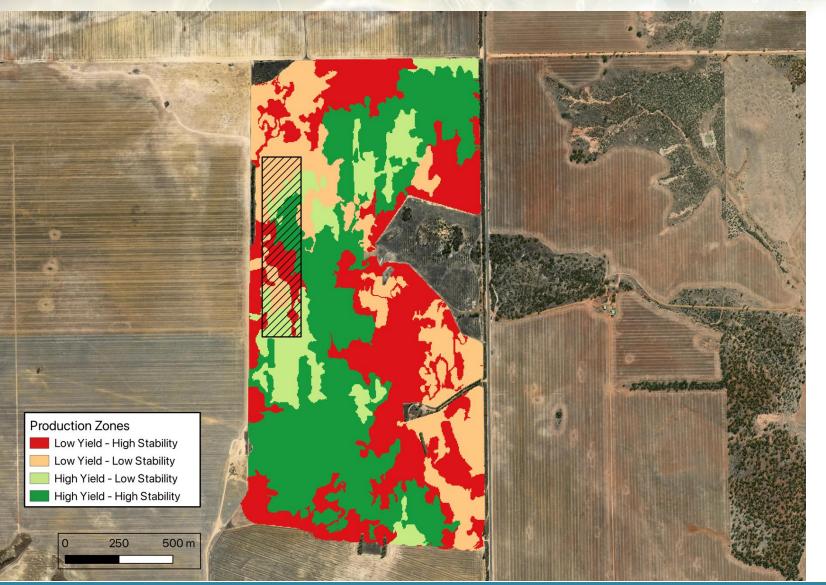
GRAINS RESEARCH CONVENIENT CURTIN University

Curtin University

Slide 5


- To understand how closely related varieties perform across real paddock variability.
- To assess commercially important traits and test whether these traits are stable and consistent across real paddock environments.
- To develop advanced statistical methods to explore performance variability.
- To support evidence-based recommendations for growers and breeding decisions.

OFE Trial Sites


- Five OFE trial sites established.
- Located across diverse regions of WA.
- Designed to capture a range of environmental conditions and assess Dale's paddock-scale performance against commercial wheat varieties.

Historical Yield Data and Production Zones

Slide 7

LH: consistently low yields across seasons.

LL: variable performance, generally trends toward low yield.

HL: potential for high yield, but results are inconsistent.

HH: consistently high yields with reliable performance.

Position trial sites across all four zones.

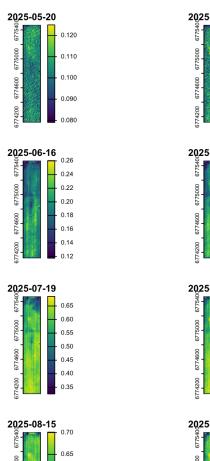
Trial Design and Seeding Map

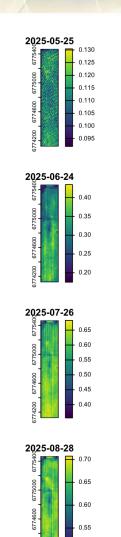
	REP1		REP 2		REP 3	
RUN LINE	1	2	3	4	5	6
Length ~1480 m	Dale	Scepter	Dale	Scepter	Scepter	Dale

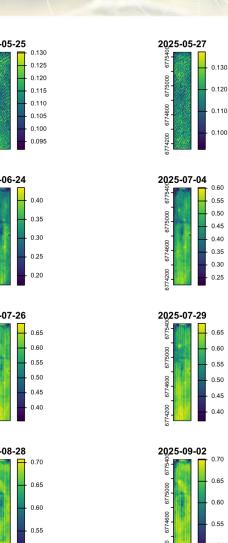
- Varieties: Dale (InterGrain) and Scepter, Rockstar or Tomahawk
- Variety order has been randomised and is unique for each grower.
- Six strips, each 36 m wide
- Trial width and length: 216 m x 800-1800 m

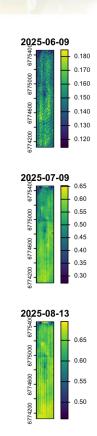
Images of Emerging Crops - 2 weeks and 5 days after sowing (8 Jun 2025)

Images of Crops - 2 months and 3 weeks after sowing (10 Sep 2025)


Where Varieties Meet the Paddock


NDVI Images (Sentinel-2)





- NDVI = Normalised Difference Vegetation Index
- Quantifies green vegetation using:
 - Near-infrared reflectance (from leaves)
 - Red light absorption (by chlorophyll)
- Value range from -1 to 1
 - Low values (-0.1 to 0.1): bare soil, rock, sand
 - High values (approaching 1): dense, green vegetation

Seasonal change visible:

- May: blue-green, low NDVI (\sim 0) \rightarrow little or no vegetation
- September: light green-yellow, NDVI up to ~0.7 → active plant growth

Target Traits and Analytical Approaches

Key Agronomic Traits

- Yield
- Protein
 - Quantity (percentage of protein)
 - Quality (gluten strength and baking functionality)
- Soil type/texture

Data Analysis Methods

- Linear Mixed Models (LMMs)
- Multiple Factor Analysis (MFA)
- Multi-Environment Trial analysis (MET)

Where Varieties Meet the Paddock

THANK YOU!

Rachel Asquith
Richard Marsland
Georgia Trainor
Laurence Cross
Jayfred Godoy

Zhanglong Cao Kai Bagley Julia Easton Adam Sparks Mark Gibberd

You're welcome to get in touch at sandra.tanz@curtin.edu.au

